Hierarchical Probabilistic Matrix Factorization with Network Topology for Multi-relational Social Network
نویسندگان
چکیده
Link prediction in multi-relational social networks has attracted much attention. For instance, we may care the chance of two users being friends based on their contacts of other patterns, e.g., SMS and phone calls. In previous work, matrix factorization models are typically applied in single-relational networks; however, two challenges arise to extend it into multi-relational networks. First, the interaction of different relation types is hard to be captured. The second is the cold start problem, as the prediction of new entities in multi-relational networks becomes even more challenging. In this article we propose a novel method called Hierarchical Probabilistic Matrix Factorization with Network Topology (HPMFNT). Our model exploits the network topology by extending the Katz index into multi-relational settings, which could efficiently model the multidimensional interplay via the auxiliary information from other relationships. We also utilize the extended Katz index along with entitiy attributes to solve the cold-start problem. Experiments on two real world datasets have shown that our model outperforms the state-of-the-art with a significant margin.
منابع مشابه
Multi-perspective Decision Support System for Hierarchical Bus Transportation Network Design: Tehran Case Study
In this paper, a multi-perspective decision support system (MP-DSS) to design hierarchical public transportation network is developed. Since this problem depends on different perspectives, MP-DSS consists of two sub-systems with macro and micro sub-systems based on travel information, land use and expert knowledge. In the micro sub-system, two sub-modules are developed considering o...
متن کاملLearning Multi-Relational Semantics Using Neural-Embedding Models
Real-world entities (e.g., people and places) are often connected via relations, forming multirelational data. Modeling multi-relational data is important in many research areas, from natural language processing to biological data mining [6]. Prior work on multi-relational learning can be categorized into three categories: (1) statistical relational learning (SRL) [10], such as Markovlogic netw...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملItem-Level Social Influence Prediction with Probabilistic Hybrid Factor Matrix Factorization
Social influence has become the essential factor which drives the dynamic evolution process of social network structure and user behaviors. Previous research often focus on social influence analysis in network-level or topic-level. In this paper, we concentrate on predicting item-level social influence to reveal the users’ influences in a more fine-grained level. We formulate the social influen...
متن کاملHigh Performance Multimodal Networks
Networks often form the core of many users’ spatial databases. Networks are used to support the rapid navigation and analysis of linearly connected data such as that found in transportation networks. Common types of analysis performed on such networks include shortest path, traveling salesman, allocation, and distance matrix computation. Network data models are usually represented as a small co...
متن کامل